Reservoir Rock Characterization Using Wavelet Transform and Fractal Dimension
Authors
Abstract:
The aim of this study is to characterize and find the location of geological boundaries in different wells across a reservoir. Automatic detection of the geological boundaries can facilitate the matching of the stratigraphic layers in a reservoir and finally can lead to a correct reservoir rock characterization. Nowadays, the well-to-well correlation with the aim of finding the geological layers in different wells is usually done manually. For a rather moderate-size field with a large number of wells (e.g., 150 wells), the construction of such a correlation by hand is a quite complex, labor-intensive, and time-consuming. In this research, the wavelet transform as well as the fractal analysis, with the aid of the pattern recognition techniques, are used to find the geological boundaries automatically. In this study, we manage to use the wavelet transforms approach to calculate the fractal dimension of different geological layers. In this process, two main features, the statistical characteristics as well as the fractal dimensions of a moving window, are calculated to find a specific geological boundary from a witness well through different observation wells. To validate the proposed technique, it is implemented in seven wells of one of the Iranian onshore fields in the south-west of Iran. The results show the capability of the introduced automatic method in detection of the geological boundaries in well-to-well correlations.
similar resources
An Adaptive Segmentation Method Using Fractal Dimension and Wavelet Transform
In analyzing a signal, especially a non-stationary signal, it is often necessary the desired signal to be segmented into small epochs. Segmentation can be performed by splitting the signal at time instances where signal amplitude or frequency change. In this paper, the signal is initially decomposed into signals with different frequency bands using wavelet transform. Then, fractal dimension of ...
full textAn Adaptive Segmentation Method Using Fractal Dimension and Wavelet Transform
In analyzing a signal, especially a non-stationary signal, it is often necessary the desired signal to be segmented into small epochs. Segmentation can be performed by splitting the signal at time instances where signal amplitude or frequency change. In this paper, the signal is initially decomposed into signals with different frequency bands using wavelet transform. Then, fractal dimension of ...
full textan adaptive segmentation method using fractal dimension and wavelet transform
in analyzing a signal, especially a non-stationary signal, it is often necessarythe desired signal to be segmented into small epochs. segmentation can beperformed by splitting the signal at time instances where signal amplitude orfrequency change. in this paper, the signal is initially decomposed into signals withdifferent frequency bands using wavelet transform. then, fractal dimension of thed...
full textAdaptive Segmentation with Optimal Window Length Scheme using Fractal Dimension and Wavelet Transform
In many signal processing applications, such as EEG analysis, the non-stationary signal is often required to be segmented into small epochs. This is accomplished by drawing the boundaries of signal at time instances where its statistical characteristics, such as amplitude and/or frequency, change. In the proposed method, the original signal is initially decomposed into signals with different fr...
full textFetal Heart Sounds Detection Using Wavelet Transform and Fractal Dimension
Phonocardiography is a non-invasive technique for the detection of fetal heart sounds (fHSs). In this study, analysis of fetal phonocardiograph (fPCG) signals, in order to achieve fetal heartbeat segmentation, is proposed. The proposed approach (namely WT-FD) is a wavelet transform (WT)-based method that combines fractal dimension (FD) analysis in the WT domain for the extraction of fHSs from t...
full textAn Adaptive Segmentation Method Using Fractal Dimension and Wavelet Transform
In analyzing a signal, especially a non-stationary signal, it is often necessary the desired signal to be segmented into small epochs. Segmentation can be performed by splitting the signal at time instances where signal amplitude or frequency change. In this paper, the signal is initially decomposed into signals with different frequency bands using wavelet transform. Then, fractal dimension of ...
full textMy Resources
Journal title
volume 37 issue 3
pages 223- 233
publication date 2018-06-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023